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Abstract 
Given adjacent vertices v and w of a graph G = (V ,E) , the Randic weight 
of the edge {v, w}is the number }),({ wvR . The Randic weight of a graph 
G, R(G) is the sum of the weights of its edges. This weight was first 
introduced by M. Randic [5]. 
B. Bollobas and P. Erdös [2]defined, for 0,   R , the weight 

)(ew of an edge e={v, w} of a graph to be 
 ))()(()( wdvdew  . 

Thus )(
2

1 ew


 is the Randic weight of the edge. For the graph G they 

defined 



)(

)()(
GEe

ewGw  and 



)(

)()(
GEe

ewGw  . 

The special degree of the node v  V , introduced by M.Cocan and V. 
Proºcanu [3], is a number GS(v) = )(21 )...( bnsss  calculated in b basis, 

1,*  nNb . 
The special degree is a global feature of the node, which depends on the 
entire graph; it is a number that expresses how ''strong'' the respective 
node is, depending on its degree and the degrees of all its descendants. 
M.Cocan [4] introduced a global characteristic of a graph, named the 
graph connection power. He will determine this value by using the 
concept of special degree of a graph vertex.  
Both the Randic weight and the connection power are global 
characteristics of a graph. The present paper aims at constructing a 
comparative study of the Randic weight of a connected graph and the 
graph connection power. 
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1. INTRODUCTION 
The present paper aims at constructing a comparative study of the Randic weight 

of a connected graph and the graph connection power. Both the Randic weight and the 
connection power (or special degrees vector) are global characteristics of a graph. 

We define a graph G as an orderer paar G = (V ,E), where V and G are sets, V is 
the vertex set of G and E is the edge set of G. The elements of V are vertices and the 
elements of G are edges. G is null if V  and empty if E . 

The degree, )(vdG , in G of a vertex Vv is the sum of the numbers the links 

incident on v and double numbers loops incident on v. We may delete the subscript in 
this notation if no ambiguity emerges. Vertices of degrees 0 are isolated. Two distinct 
vertices are adiacent if they are incident on a common edgs. Adjacent edges and adjacent 
vertices are sometimes described as neighbours. 

In [1] is defined the cocycle vG  of a vertex in a graph G as the set of all links 

incident on v. The cocycle SG  of a set S of vertices is the sum of the cocycles of those 

vertices. Thus }{vG  = vG ; vG  is a vertex cocycle. The symbol G  may be 

replaced by   if no ambiguity results. 
 

2. THE RANDIC WEIGHT OF THE EDGE IN A GRAPH 
Given adjacent vertices v and w of a graph G = (V ,E) , the Randic weight or 

simply weight of the edge {v, w}is 2

1

))()((}),({  wdvdwvR , where d(v) and d(w) are 
the degrees of v and w. The Randic weight or simply weight of a graph G, R(G) is the 
sum of the weights of its edges. This weight was first introduced by M. Randic in 1975. 

B. Bollobas and P. Erdös [1998] defined, for 0,   R , the weight )(ew of 

an edge e={v, w} of a graph to be 
 ))()(()( wdvdew  . Thus )(1 ew  is simply the 

weight )(ew , and )(
2

1 ew


 is the Randic weight of the edge. 

For the graph G they defined 



)(

)()(
GEe

ewGw  and  



)(

)()(
GEe

ewGw  . 

In [2] is present a   interesting set of the results of the weight )(ew  and implicit 

of the Randic weight.  
 
3. SUCCESSOR (DESCENDANT) OF  kth ORDER , ,Nk  OF A NODE IN 
A GRAPH 
Definition 1 Node )(GVw  is called descendant of node v, if w is accessible from v, by 
a links, in G. If the length of the link is 1 (it consists of only one edge), then we say that w 
is a direct (immediate) descendant of v.  

Let us note: 
};},{,|{:)( MwvVwwvSuccd   

Case 1 Graph G does not contain cycles.  
We define: 
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};{:)()0( vvSucc   

);(:)()1( vSuccvSucc d  

.2),(\))((:)( )2()1()(   kvSuccvSuccSuccvSucc kk
d

k  

where: 

.),()(
1

11 
Vv

dd VVvSuccVSucc


  

Then we have: 
 

vvSucc Gd )( ; 

;))(()(
}{)(

)2( vSuccGvSucc d
vGV 

  

.2,))(()( )1(

2

0
)()()(

)(  






kvSuccGvSucc k

k

j
vjSuccGV

k



 
where |X| represents the number of elements of the X set, and

 1VG represents the subgraph 

of graph G induced by the set of nodes ., 11 VVV   

Definition 2 The elements of the set )()( vSucc k  are kth order descendants of node v . For  
k = 1, we obtain the direct descendants. 
Example. G = (V, E), V = {v1, v2, �, v13}.  
 

  
    Figure 1 

 
Succ v v vd ( ) { , }

`
1 2 3 ; G v v v v v1 1 2 1 3 {{ , },{ , }} ; 

Succ v Succ Succ v Succ v

Succ v v v v v v v v v v v v v
d d

d

( ) ( )( ) ( ( )) \ ( )

({ , }) \ { } { , , , , } \ { } { , , , };

2
1 1

0
1

2 3 1 1 4 5 6 7 1 4 5 6 7

 
 

 

}};,{},,{},,{},,{}),({))(( 73635242321} }13,...3,2{1{\)(
vvvvvvvvvvvSucc

vvvVGV GdG    



.   

Succ v Succ Succ v Succ v

Succ v v v v v v v v v v v v v v v v

v v v v v v

d

d

( ) ( ) ( )( ) ( ( ) \ ( )

({ , , , }) \ { , } { , , , , , , , } \ { , }

{ , , , , , };

3
1

2
1

1
1

4 5 6 7 2 3 2 3 8 9 10 11 12 13 2 3

8 9 10 11 12 13

 
  


 

 G G

k

V G v Succ v v v v
v v v v v v v v

v v v v v v v v v v v v

Succ v k

( ) \({ } ( ) ( )) { , ,..., }
({ , , , }) ({ , , , })

{{ , },{ , },{ , },{ , },{ , },{ , }};

( ) ; ;( )

1
1

1 4 5 13
4 5 6 7 4 5 6 7

4 8 5 9 5 10 7 11 7 12 7 13

1 4


 



  

 

�������������.................................... 

;3};,,{)(

;1};,{};{)(

7}13\{)(1211313
)2(

1313713713





vvvvvSucc

vvvvvvSucc

vGVG

GGd




 

;1}),({};{)(

;2}),,({};,{)(

61}13,12,11,7,3\{)(213
)4(

12113}13,7\{)(6113
)3(





vvvvSucc

vvvvvvSucc

vvvvvGVG

vvGVG




 

;2)(};,{)( 23

0
)13(\)(

5413
)5( 



vvvvSucc

k
vkSuccGV

G



  

;3}),({};,,{)( 544

0
)13()(\)(

109813
)6( 



vvvvvvSucc

k
vkSuccGV

G



  

Succ v kk( ) ( ) , .13 6    
Case 2 The graph has cycles.  

If G has cycles, then there are two possibilities: 

a) *)(
21 ),(,)( NkvSuccww k   so that {w1, w2} E. This possibility is 

represented in figure 4. 

 
Figure 2 
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Succ(0)(v) := {v}; 
Succ(1)(v) := Succ(d)(v) = {w|wV, {v, w}E}; 
And 
|Succ(k+1)(v)| = |Succ(d)(Succ(k)(v) \ Succ(k-1)(v)| + 
                         + |{(wi, wj) / wi, wj Succ(k)(v), wiwj, {wi, wj}E| 
or 

|Succ(k+1)(v)| = (v))(k)(Succ
1k

0j
(v)(j)Succ\V(G)

G






  + 2p, k2 

where p is the number of distinctive nodes in Succ(k)(v) which are joined by edges in G.  
 

 
4. THE SPECIAL DEGREE OF A NODE IN A GRAPH 

Take the connected graph G = (V, E),V= n, E= m, whose incidence matrix 
AMm,n {(0,1)} has the form: 

niii vvv ...
21
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Definition 3 The special degree of the vertex v  V , is a number GS(v) = )(21 )...( bnsss  

calculated in b basis, 1,*  nNb , where: 

1s  - represents for the degree of the vertex v; 

2s  - represents for the degrees sum of the direct descendants of the vertex v (the 
neighbouring vertices of the vertex v), after the vertex v has been eliminated; 

3s  - represents for the degrees sum of the direct descendants of the direct descendants (in 

other words the degrees sum of the secondary descendants) of the vertex v, after the direct 
descendants of v have also been eliminated, and so on. 

We suppose that .mn   
This concept was introduced by M.Cocan and V. Proºcanu [3]. 
The special degree is a global feature of the vertex, which depends on the entire 

graph; it is a number that expresses how ''strong'' the respective vertex is, depending on 
its degree and the degrees of all its descendants. 

The special degree can also be extended on multigraphs and unconnected graphs. 
M.Cocan [1999] introduced a global characteristic of a graph, named the graph 

connection power. He will determine this value by using the concept of special degree of 
a graph vertex.  
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5. A NECESSARY AND SUFFICIENT CONDITION FOR THE 
ISOMORPHISM OF GRAPHS USING THE SPECIAL DEGREES 
Theorem 2 The necessary and sufficient condition for two graphs G1= (V1, E1) and       
G2 = (V2, E2) to be isomorphic is that GS1 = GS2, where GSi(i = 1,2) represents the sets of 
the special degrees of the graph nodes Gi (i = 1,2) with the components in increasing or 
decreasing order. 
Proof. Sufficiency. From GS1 = GS2 it follows that n1=n2 , where n1=V1, n2 = V2. 

Take  V v v vn1 1
1

2
1 1 , ,..., and  V v v vn2 1

2
2
2 2 , ,..., , n = n1 = n2 . 

From GS v GS vi j1
1

2
2( ) ( )  taking into account the fact that: 

1
,

21
,2

11
,1

1
1 ...)( in

n
i

n
ii sbsbsvGS  

  
2
,

221
,2

12
,1

2
2 ...)( in

n
j

n
jj sbsbsvGS  

 
it follows that

 

s s k nk i k j, , , , ,1 2 1    

which enables us to define the isomorphism  :V V1 2  by  21)( ji vv  . 

The equality s si j1
1

1
2

, ,  expresses the fact that the degree of the node vi
1  is equal to 

degree of node vi
2 . 

Necessity. Suppose that the graphs G1 and G2 are isomorphic; then M1 = M2 ,    
Mi (i = 1,2) being the maximal incidence matrices of the graphs Gi (i = 1,2), and next  
GS1 = GS2. 
 
6. EXAMPLES 

The programme for determining the special degrees of the nodes and the maximal 
incidence matrix, devised in Delphi, provided the following results for the graphs           
Gi (i =1,...,5). 
1) G1: n = 5, m = 6; 

1 23

4

5 2

e ee

e e
e

12 

3

4

5 6

 
 

GS(v1) = GS(v4)>GS(v3)>GS(v5)>GS(v2). 
Figure 3 

2) G2: n = 6, m = 9; 
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GS(v3)>GS(v2)=GS(v1)>GS(v6)>GS(v5)>GS(v4). 

Figure 4 
3) G3: n = 6, m = 6; 
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GS(v2)>GS(v1)>GS(v4)>GS(v5)>GS(v3)>GS(v6) 

Figure 5 
Node v2 is �stronger� than node v1 due to node v6. 
4) G4: n = 6, m = 6; 
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GS(v1)>GS(v2)>GS(v4)>GS(v5)>GS(v3)>GS(v6) 

Figure 6 
In comparison to example 3, the nodes v1 and v2 were interchanged and the 

algorithm �noticed� this. 
5) G5: n = 9, m =15; 

 

GS(4)>GS(3)>GS(2)=GS(7)>GS(5)=GS(8)>GS(1)=GS(6)>GS(9). 
Figure 7 

Node v4 is �stronger� than node v3 due to node v9. 
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7. A COMPARATIVE STUDY OF THE RANDIC WEIGHT OF A 
CONNECTED GRAPH AND THE GRAPH CONNECTION POWER 

We mention a few representative aspects of these two characteristics of the 
graphs. 
(i) The special degree and Randic weight are two global characteristics of a graph, 
because they contain the entire information of the graph. 
(ii) The Randic weight of a graph G, of the order n, having no isolated nodes satisfies 
inequality 1)(  nGR ; the inequality is equality for the star graphs. 
(iii) The weight of the graph G, with the number the edges m, satisfy 

inequality 


2)
2

118
()(




m
mGw , if )1,0[ ; for the Randic weight

2

1
 , 

therefore
4

118
)(




m
GR ; the inequality is equality if and only if 










2

n
m , 

therefore if  nKG   is a complete graph of the order n and possibly isolated nodes. 

(iv) The i-component (digit) of the special degree of the node of the unoriented graph 
satisfy following property si  max (m, n) i = 1, 2,�, n. 
(v) The special degree of a node is calculated by a recursive in-depth following of the 
graph. 

(vi) For calculating the special degree GS(v) in basis 10 the following formula is used: 

GS v s b s b s bn n
n( ) ...       

1
1

2
2 0 . 

(vii) The special degree is a global feature of the node, which depends on the entire graph; 
it is a number that expresses how �strong� the respective node is, depending on its degree 
and the degrees of all its descendants. 

(viii) The special degree can also be extended on multigraphs graphs. 
(ix) The necessary and sufficient condition for a graph ),( EVG   to be connected is 

that VvmvGS
n

i
i 



,)(
1

, where ),...,,()( 21 nsssvGS  , ),1(,)( nisvGS ii  . 

(x) The necessary and sufficient condition for a graph ),( EVG  , nV || to be a 

elementary chain },...,,{ 21 nvvv  is that: 

)(1 )0*)(,1*2(,2*)1(()()( bini iinivGSvGS   , 




2

,,1
n

kki . 

(xi) The number of connected components in the graph G = (V, E), is greater or equal 

than the number of distinct values from }.|)({
1

VvvGS
n

i
i 



 

(xii) An algorithm for establishing the connected components in a graph is the following: 
Step 1 Determine ))(),...,(),(()( 21 vsvsvsvGS n , Vv ; 
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Step 2 Calculate the values VvvsvN
n

i
i 



),()(
1

; 

Step 3 Determine the distinct values sNNN ,...,, 21  of the vector�s components 

))(),...,(),(( 21 nvNvNvN of the graph G. 

Step 4 Determine the partition ),1( siVi   of the vertices set of the graph: 

;,1,||),(,,
1

siNVjiVVVV iiji

n

i
i 


  

siNvNVvV ii ,1},)(|{  ; 

Step 5 Calculate 
1

)(




i

i
i N

Vcard
c  for every si ,1 ; 

Step 6 Write the number 



s

i
icc

1

 represents the number of connected components of 

the graph G. 
  
(xiii) Application: two isomorphic graphs (G1 and G2). 
 
1. G1 = (V1 ,E1), 

},,,,,,,,{ 9876543211 vvvvvvvvvV  ,

}},{},,{},,{},,{},,{},,{},,{},,{{ 75544373325141211 vvvvvvvvvvvvvvvvE  ; 

 
Figure 8 

The special degrees of the nodes for the graph G1 are: 
366660000)( 4 vGS ;   357830000)( 1 vGS ;   357830000)( 5 vGS ; 

348820000)( 3 vGS ;   247970000)( 2 vGS ;   247970000)( 7 vGS ; 

0)( 6 vGS ;                    0)( 8 vGS ;                   0)( 9 vGS . 
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Figure 9 The maximal incidence matrix of the graph G1 

2. G2 = (V2 ,E2), 
},,,,,,,,{ ''''''''' 7765442112 vvvvvvvvvV  ,

}},{},,{},,{},,{},,{},,{},,{},,{{ '''''''''''''''' 76657454427161212 vvvvvvvvvvvvvvvvE  ; 

 
Figure 10 

The special degrees of the nodes for the graph G2 are: 
366660000)( '7

vGS ;   357830000)( '6
vGS ;   357830000)( '1

vGS ; 

348820000)( '4
vGS ;   247970000)( '2

vGS ;   247970000)( '5
vGS ; 

0)( '3
vGS ;                    0)( '8

vGS ;                   0)( '9
vGS . 

 

 
Figure 11 The maximal incidence matrix for the graph G2 
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