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Abstract

Given adjacent vertices v and w of agraph G = (V ,E) , the Randic weight
of the edge {v, w}isthe number R({v,W}) . The Randic weight of a graph
G, R(G) is the sum of the weights of its edges. This weight was first
introduced by M. Randic [5].

B. Bollobas and P. Erdds [2]defined, for o € R, a # 0, the weight

w, (e) of an edge e={v, w} of a graph to be w,(e) = (d(v)d(w))*.

Thusw , (€) is the Randic weight of the edge. For the graph G they
2
defined W(G) = > w(e) and w, (G) = D w, (e).
ecE(G) ecE(G)
The special degree of the node ve V , introduced by M.Cocan and V.
Proscanu [3], is a number GS(v) = (SS,.--S,), Calculated in b basis,

beN",n>1.

The special degree is a global feature of the node, which depends on the
entire graph; it is a number that expresses how "'strong" the respective
nodeis, depending on its degree and the degrees of all its descendants.
M.Cocan [4] introduced a global characteristic of a graph, named the
graph connection power. He will determine this value by using the
concept of special degree of a graph vertex.

Both the Randic weight and the connection power are global
characteristics of a graph. The present paper aims at constructing a
comparative study of the Randic weight of a connected graph and the
graph connection power.

Keywords: connected graph, special degree, incidence matrix, Randic
weight graph



1. INTRODUCTION

The present paper aims at constructing a comparative study of the Randic wei ght
of a connected graph and the graph connection power. Both the Randic weight and the
connection power (or special degrees vector) are global characteristics of a graph.

We define a graph G as an orderer paar G = (V ,E), whereV and G are sets, V is
the vertex set of G and E is the edge set of G. The dements of V are vertices and the
eementsof Gareedges. Gisnulif V= andemptyif E= O .

The degree, d; (V) , in G of avertex vV eV is the sum of the numbers the links
incident on v and double numbers loops incident on v. We may dd ete the subscript in
this notation if no ambiguity emerges. Vertices of degrees O are isolated. Two distinct
vertices are adiacent if they areincident on a common edgs. Adjacent edges and adjacent
vertices are someti mes described as neighbours.

In [1] is defined the cocycle O,V of avertex in agraph G as the set of all links
incident on v. The cocycle 0,S of aset Sof verticesisthe sum of the cocycles of those

vertices. Thus 0.{V} = 0.V; O,V is a vertex cocycle The symbol 0, may be
replaced by 0 if no ambiguity results.

2. THE RANDIC WEIGHT OF THE EDGE IN A GRAPH

Given adjacent vertices v and w of a graph G = (V ,E) , the Randic weight or
1

simply weight of the edge {v, w}is R{v,w}) = (d(v)d(w)) 2, where d(v) and d(w) are
the degrees of v and w. The Randic weight or simply weight of a graph G, R(G) is the
sum of the weights of its edges. This weight was first introduced by M. Randicin 1975.

B. Bollobas and P. Erdos [1998] defined, fora € R, o # 0, the weight W, (€) of
an edge e={v, w} of a graph to be w_(e) = (d(v)d(w))“. Thus w,(€) is simply the
weight w(€), and w , (€) isthe Randic weight of the edge.

2

For the graph G they defined W(G) = > w(e) and w,(G) = > w,(€).

ecE(G) ecE(G)

In[2] is present a interesting set of the results of the weight w, (e) and implicit
of the Randic weight.

3. SUCCESSOR (DESCENDANT) OF k™ ORDER, ke N, OF A NODE IN
A GRAPH
Definition 1 Node we V (G) is called descendant of node v, if w is accessible from v, by

alinks, in G. If thelength of thelink is 1 (it consists of only one edge), then we say that w
isadirect (immediate) descendant of v.
Let us note

Suce, (V) ={w|weV {v,w} e M};
Case 1 Graph G does not contain cycles.
We define



Succ@ (v) ={\};
Succ® (v) = Succ, (V);

Suce™ (v) := Suee, (Suee ™ (V) \ Suee™? (v) k2 2.
where:

Suce, (V;) = | Suce, (v), WV, < V.

VeV,

Then we have:

|Sucey (V)| =[06V
|Suee® (v)[ =

aG\/(G)—{v} (Succ, (V)

‘Suoc("’ (v)‘ =10g

v(©)- U sty
j=0
where [ X| represents the number of elements of the X set, and G,, represents the subgraph
of graph G induced by the set of nodes V,,V, c V.

(Succ™ ™ (v))|, k > 2.

Definition 2 The dements of theset Succ™ (v) are k" order descendants of node v. For
k = 1, we obtain the direct descendants.
Example. G = (V, E), V = {vy, V,,

veny Vlg}.

T
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Figurel
Succy (v, ) ={v,,Va}: GV, = {{Vl’vz} ’{Vl’VS}} ;
Succ® (v,) = Succ, (Succ, (v,)) \ Succ® (v,) =
Suce, ({v,,Vah) Mvid ={vi, vy Vs, Vs Vo v} ={V, V6, Ve, Vo b

Oy (U (W) = s (Y V1) = {1V, VY, Vb AV Vo {5 V1)



ucc® (v,) = Suee, (Succ® (v;) \ Suce® (v,) =
= S'ICCd ({V41V5’V6’V7}) \{Vz 1V3} = {Vz V3, Vg, Vg, Vi, Vip, Yy, 1V13} \{Vz 1V3} =
= {VS’V9 WVi01 Vi1, Vo 1V13};

% o (Ve Vs, V5, V7}) = G (Ve V5,5, V1)) =
V(@ oaiee ()

= {{VA’V8}’{VS’VQ}’{VS’V:LO}’{V7’V11}’{V7’V12}’{V7’V13}};
ucc® (v,) = T; k > 4;

{v4.v5...v13}

SJCCd (Vls) = {V7} ;é’evla = {V7 1V13} ;|O”GV13| =1

(2) _ . _
Succ' (V) _{VS,Vll’Vlz},O”GV(G)\{Vls) v, =3
(3) _ . .
Suce™ (vig) ={ Vi, Ve}; aG\/(G)\{vTvlS} ({Vas Vi, Vi}) | = 2
(4) _ . 1.
S0 () = {VH0e, sy 00VeD)| =1
5 . .
SJCC( )(Vl3) ={V41V5}’ae 3 (Vz) =2
VG U sueck (vy5)
k=0
6 . .
SJCC( )(Vl3) ={V8,V9,V10},5G 4 ({V41V5}) =3
ven U sueel® ()
k=0

ucc® (v,) =D, k>6.
Case 2 The graph has cycles.
If G has cydes, then there are two possibilities:

a (A w,w, e ucc®(v),keN" so tha {w, w}e E. This possibility is
represented in figure 4.

Figure 2



Succ®(v) := {v};
Succ®(v) := Sucey(V) = {(WweV, {v, w} E};
And
|SuccI(v)] = |Succ(Suec¥(v) \ Suec* ()| +
+ [{(wi, W) / W, wi e Succ®(v), wizwg, {wi, Wi eE|
or

pc =0, (sueel )] + 2pte
V(G)\ leUcc(j) )
j=0

where p is the number of distinctive nodes in Succ®(v) which are joined by edgesin G.

4. THE SPECIAL DEGREE OF A NODE IN A GRAPH
Take the connected graph G = (V, E), /V /: n, /E /: m, whose incidence matrix
AeMnn {(0,2)} hastheform:

e

jm . . . .
Definition 3 The specid degree of the vertex ve V , isanumber GSV) = (SS;---S,) )

caculaedinbbasis, be N",n>1, where
S, - represents for the degree of the vertex v,

S, - represents for the degrees sum of the direct descendants of the vertex v (the
neighbouring vertices of the vertex v), after the vertex v has been diminated;
S, - represents for the degrees sum of the direct descendants of the direct descendants (in

other words the degrees sum of the secondary descendants) of the vertex v, after the direct
descendants of v have a so been €iminated, and so on.

We supposethat n>m.

This concept was introduced by M.Cocan and V. Progcanu [3].

The speciad degree is a global feature of the vertex, which depends on the entire
graph; it is a number that expresses how "strong" the respective vertex is, depending on
its degree and the degrees of al its descendants.

The specia degree can also be extended on multigraphs and unconnected graphs.

M.Cocan [1999] introduced a global characteristic of a graph, named the graph
connection power. He will determine this value by using the concept of special degree of
agraph vertex.



5. A NECESSARY AND SUFFICIENT CONDITION FOR THE
ISOMORPHISM OF GRAPHSUSING THE SPECIAL DEGREES

Theorem 2 The necessary and sufficient condition for two graphs G,= (Vi, E;) and
G, = (V,, Ey) to beisomorphicisthat GS, = GS;, where GS(i = 1,2) represents the sets of
the special degrees of the graph nodes G; (i = 1,2) with the components in increasing or
decreasing order.

Proof. Sufficiency. From GS, = GS; it follows that n;=n, where n;= |Vl| , b= |V2| .
TakeV, = {v}vévﬁ} and V, = {vaivﬁ} ,N=m=n,.

From GS, (v') = GS, (v}) taking into account the fact that:

GS,(V}) =s;;b" +5,b"? +...+ 5,

GS,(vi) =s/ b+ s b"? + ..+ s},

itfollowsthat

Si,i :Slf,j’ k=1n,

which enables us to define theisomorphism ¢ :V, >V, by ¢ (V') = vjz.
The equality S, = S| expresses the fact that the degree of the node V' is equal to

degree of node V.

Necessity. Suppose that the graphs G; and G, are isomorphic, then M; = M,
M; (i = 1,2) being the maximal incidence matrices of the graphs G; (i = 1,2), and next
GS = GS,.

6. EXAMPLES

The programme for determining the specia degrees of the nodes and the maximal
incidence matrix, devised in Dephi, provided the following results for the graphs
G (i =1,...,5).
1)Gi:n=5m=6;

GSv1) = GYVa)> G Vv5)>GYVs)> GHV2).
Figure3

2)Gxn=6,m=09;



GS(vs)> GS(v2)= GYv1)> GY(Ve)> G v5)> G Vs).
Figure4

GY(V2)>GS(v1)>GYVa)> GYVs)> GH(V3)> GS(Ve)
Figure5
Node v, is “stronger” than node v; dueto node V.
4) G4 n=6, M= 6;

@ 65/2‘\ €3 /1‘\ @ 4 @

GY(v1)>GS(V,)> GYVa)> GYVs)> GH(V3)> GS(Ve)
Figure 6
In comparison to example 3, the nodes v; and v, were interchanged and the
algorithm ,,noticed” this.
5) Gs: n=9, m=15;

GS(4)>GY3)>GY2)=GY7)>GS5)=GY8)>GY1)=GS6)>GY9).
Figure7
Node v, is “stronger” than node V3 dueto node vy.



7. A COMPARATIVE STUDY OF THE RANDIC WEIGHT OF A

CONNECTED GRAPH AND THE GRAPH CONNECTION POWER
We mention a few representative aspects of these two characteristics of the

graphs.

(i) The specia degree and Randic weight are two globa characteristics of a graph,
because they contain the entire information of the graph.

(ii) The Randic weight of a graph G, of the order n, having no isolated nodes satisfies

inequality R(G) > n—1; theinequality is equality for the star graphs.
(iii) The weight of the graph G, with the number the edges m, satisfy

inequalityw, (G) > m(%) 2
v8m+1+1
4

, ifa €[0]); for the Randic weighta =—%,

n
therefore R(G) > ; the inequality is equality if and only ifm= [2} :
thereforeif G = K, isacomplete graph of the order n and possibly isolated nodes.

(iv) The i-component (digit) of the specia degree of the node of the unoriented graph

satisfy following property s <max(m,n)i=1,2,..., n.

(V) The specia degree of a node is calculated by a recursive in-depth following of the

graph.

(vi) For calculating the special degree GS(v) in basis 10 the following formulais used:
GS(V) =s,-b" +s,-b"*+...+s, - b°.

(vii) The specia degreeisagloba feature of the node, which depends on the entire graph;

it isanumber that expresses how ,strong” the respective node is, depending on its degree

and the degrees of dl its descendants.

(viii) The spedia degree can also be extended on multigraphs graphs.

(iX) The necessary and sufficient condition for a graph G = (V,E) to be connected is

thatzn:GS, (V)=m,VveV , wheeGS(V) = (s,,S,,...,S,), GS (V) = s, (i =1n).
() 'II':;e necessary and sufficient condition for a graphG = (V,E), |V |=nto be a
elementary chain 6 ={v,,V,,...,v,} isthat:
GS(v,) =GS(V, i,,) =((i-D*2,(n—=2*i+1,(i)* 0),, i =1k k= [g}
(xi) The number of connected components in the graph G = (V, E), is greater or equal
than the number of distinct val ues from {Zn:GSI (V) |veV}.
i=1

(xii) An agorithm for establishing the connected components in a graph is the following:
Sep 1 Determine GS(V) = (S,(V),S,(V),...,S,(V)), VveV;



Step 2 Calculate the values N(v) = > s/ (v),VveV ;
i=1

Step 3 Determine the distinct values N;,N,,...,N

(N(v,), N(v,),..., N(v,)) of the graph G.

Step 4 Determine the partition V, (i = J,_s) of the vertices set of the graph:

s of the vector’s components

V=JV,.V,nV, =@,@= )V |=N.i=1s
i=1
V, ={veV|N(V)=N},i=1s;
Step 5 Calculate :%(\1) for everyi =1,_s;
it

S
Sep 6 Write the number € = Z G, representsthe number of connected components of
i=1

the graph G.
(xiii) Application: two isomorphic graphs (G; and Gy).

1. Gl = (Vl ,El),
Vl :{V11V21V31V41V51V61V71V8’V9} )

By ={{V,Vo} {V1,Va} {V1, Va} { V5, Va} { Vs, Vo) { Vs, Va} { Ve Vo) { Vs Vo1 }

— ¥y

5
v b W
1/4 N

% v ¥V
3 7

Lo
b

Figure8
Thespedid degrees of the nodes for the graph G, are:

GS(v,) = 366660000 ; GS(v,) = 357830000; GS(v;) = 357830000 ;
GS(v,) = 348820000; GS(v,) = 247970000; GS(v,) = 247970000
GS(v,) =0; GS(v,) = 0; GS(v,) = 0.
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Figure 9 The maximal incidence matrix of the graph G,
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= — R — I — I —]

2. Gz = (Vz ,Ez),
Vo ={V, Vv,V VeV Ve Vo Vo

E, = {0V, v, 10V, V1AV, LV, VY, VY,V 1Y Y Y Y 3

Iow v, v v
5 F Z i
Figure 10

Thespecid degrees of the nodes for the graph G, are:
GS(v,) = 366660000 ; GS(v,)=357830000; GS(v,)=357830000;

GS(v, ) = 348820000; GS(v,) = 247970000; GS(v, ) = 247970000
GS(v,) =0; GS(v,) = 0; GS(v,)=0.
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Figure 11 The maximal incidence matrix for the graph G;
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= — R — I — ]
= — T — R — ]

¥
]
1
]
1
]
1
]
1]

E R — N — N — R — I — )
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Cli— R — N — R — i — I — {5
(== — I — T — R — [ — I — ('
(= = — I — T — | — [ — [ — | (5
(= = — T — | — [ — [ — | (' 5
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